Consistent Character V1

Create images of a given character in different poses


API

If you're looking for an API, you can choose from your desired programming language.

POST
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 import requests import base64 # Use this function to convert an image file from the filesystem to base64 def image_file_to_base64(image_path): with open(image_path, 'rb') as f: image_data = f.read() return base64.b64encode(image_data).decode('utf-8') # Use this function to fetch an image from a URL and convert it to base64 def image_url_to_base64(image_url): response = requests.get(image_url) image_data = response.content return base64.b64encode(image_data).decode('utf-8') api_key = "YOUR_API_KEY" url = "https://api.segmind.com/v1/consistent-character-ai-neolemon" # Request payload data = { "prompt": "((masterpiece, best quality, highly detailed)), simple background, character sheet, multiple poses, multiple actions, visible face, (one person), portrait, full body, young african american girl, white sweater, jeans, short curly brown hair, 2D illustration style", "negative_prompt": "text, watermark, underexposed, ugly, jpeg, (worst quality, low quality, lowres, low details, oversaturated, undersaturated, overexposed, grayscale, bw, bad photo, bad art:1.4), (font, username, error, logo, words, letters, digits, autograph, trademark, name:1.2), (blur, blurry, grainy), cropped, out of frame, cut off, jpeg artifacts, out of focus, glitch, duplicate, (amateur:1.3), merging, clipping, (nsfw), multiple hands, mutant, glitch, uncanny, cross eye, broken face, astronaut, helmet, blurry,", "image": image_url_to_base64("https://segmind-sd-models.s3.amazonaws.com/display_images/testing_imgs/ref.pose.png"), # Or use image_file_to_base64("IMAGE_PATH") "num_inference_steps": 20, "guidance_scale": 7, "seed": 4898558797, "samples": 1, "strength": 0.8, "scheduler": "karras", "sampler": "dpmpp_2m", "upscale_by": 2, "upscale_steps": 20, "upscale_guidance_scale": 7, "upscale_scheduler": "karras", "upscale_sampler": "dpmpp_2m", "upscale_mode_type": "Linear", "fd_steps": 20, "fd_guidance_scale": 7, "fd_scheduler": "karras", "fd_sampler": "dpmpp_2m" } headers = {'x-api-key': api_key} response = requests.post(url, json=data, headers=headers) print(response.content) # The response is the generated image
RESPONSE
image/jpeg
HTTP Response Codes
200 - OKImage Generated
401 - UnauthorizedUser authentication failed
404 - Not FoundThe requested URL does not exist
405 - Method Not AllowedThe requested HTTP method is not allowed
406 - Not AcceptableNot enough credits
500 - Server ErrorServer had some issue with processing

Attributes


promptstr *

Text prompt for image generation


negative_promptstr ( default: text, watermark, underexposed, ugly, jpeg, (worst quality, low quality, lowres, low details, oversaturated, undersaturated, overexposed, grayscale, bw, bad photo, bad art:1.4), (font, username, error, logo, words, letters, digits, autograph, trademark, name:1.2), (blur, blurry, grainy), cropped, out of frame, cut off, jpeg artifacts, out of focus, glitch, duplicate, (amateur:1.3), merging, clipping, (nsfw), multiple hands, mutant, glitch, uncanny, cross eye, broken face, astronaut, helmet, blurry, )

Negative prompt to avoid certain elements


imageimage *

URL of the input image


num_inference_stepsint *

Number of steps for inference

min : 1,

max : 100


guidance_scalefloat *

Guidance scale for image generation

min : 1,

max : 20


seedint *

Seed for random number generation


samplesint *

Number of samples to generate


strengthfloat *

Strength of image generation

min : 0,

max : 1


schedulerenum:str *

Scheduler type for image generation

Allowed values:


samplerenum:str *

Sampler type for image generation

Allowed values:


upscale_byint *

Upscale factor for the image

min : 1,

max : 4


upscale_stepsint *

Number of steps for upscaling

min : 1,

max : 100


upscale_guidance_scalefloat *

Guidance scale for upscaling

min : 1,

max : 20


upscale_schedulerenum:str *

Scheduler type for upscaling

Allowed values:


upscale_samplerenum:str *

Sampler type for upscaling

Allowed values:


upscale_mode_typeenum:str *

Mode type for upscaling

Allowed values:


fd_stepsint *

Number of steps for face detection

min : 1,

max : 100


fd_guidance_scalefloat *

Guidance scale for face detection

min : 1,

max : 20


fd_schedulerenum:str *

Scheduler type for face detection

Allowed values:


fd_samplerenum:str *

Sampler type for face detection

Allowed values:

To keep track of your credit usage, you can inspect the response headers of each API call. The x-remaining-credits property will indicate the number of remaining credits in your account. Ensure you monitor this value to avoid any disruptions in your API usage.