If you're looking for an API, you can choose from your desired programming language.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import requests
import base64
# Use this function to convert an image file from the filesystem to base64
def image_file_to_base64(image_path):
with open(image_path, 'rb') as f:
image_data = f.read()
return base64.b64encode(image_data).decode('utf-8')
# Use this function to fetch an image from a URL and convert it to base64
def image_url_to_base64(image_url):
response = requests.get(image_url)
image_data = response.content
return base64.b64encode(image_data).decode('utf-8')
api_key = "YOUR_API_KEY"
url = "https://api.segmind.com/v1/dminhk-dog-example-sdxl-lora"
# Request payload
data = {
"prompt": "cute puppy dog excited",
"negative_prompt": "boring, poorly drawn, bad artist, (worst quality:1.4), simple background, uninspired, (bad quality:1.4), monochrome, low background contrast, background noise, duplicate, crowded, (nipples:1.2), big breasts",
"scheduler": "UniPC",
"num_inference_steps": 25,
"guidance_scale": 8,
"samples": 1,
"seed": 3426017487,
"img_width": 1024,
"img_height": 1024,
"base64": False,
"lora_scale": 1
}
headers = {'x-api-key': api_key}
response = requests.post(url, json=data, headers=headers)
print(response.content) # The response is the generated image
Prompt to render
Prompts to exclude, eg. 'bad anatomy, bad hands, missing fingers'
Type of scheduler.
Allowed values:
Number of denoising steps.
min : 20,
max : 100
Scale for classifier-free guidance
min : 0.1,
max : 25
Number of samples to generate.
min : 1,
max : 4
Seed for image generation.
Width of the image.
Allowed values:
Height of the Image
Allowed values:
Base64 encoding of the output image.
Scale of the lora
To keep track of your credit usage, you can inspect the response headers of each API call. The x-remaining-credits property will indicate the number of remaining credits in your account. Ensure you monitor this value to avoid any disruptions in your API usage.
The Dog Example SDXL LoRA, a specialized AI model within the Stable Diffusion XL framework, uniquely trained to enhance canine imagery. This model is based on LoRA adaptation weights, specifically trained using DreamBooth on a photograph of a dog. This training approach ensures the model's proficiency in accurately rendering canine features, textures, and expressions
Canine-Focused Imagery: Excellently captures the essence and details of dogs in images.
High Precision:Trained on dog photos for enhanced accuracy in canine features.
Versatile Applications: Suitable for various uses, from pet photography enhancement to creative dog-themed art.
Pet Photography:Enhance the quality and detail of dog photographs.
Veterinary Education: Create detailed canine images for educational purposes.
Pet Care Industry: Ideal for creating visuals for pet care products and services.
Advertising and Marketing: Use in campaigns or materials featuring dogs.
SDXL Img2Img is used for text-guided image-to-image translation. This model uses the weights from Stable Diffusion to generate new images from an input image using StableDiffusionImg2ImgPipeline from diffusers
Best-in-class clothing virtual try on in the wild
This model is capable of generating photo-realistic images given any text input, with the extra capability of inpainting the pictures by using a mask
Take a picture/gif and replace the face in it with a face of your choice. You only need one image of the desired face. No dataset, no training