API
If you're looking for an API, you can choose from your desired programming language.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
const axios = require('axios');
const api_key = "YOUR API-KEY";
const url = "https://api.segmind.com/v1/gpt-3.5-turbo";
const data = {
"messages": [
{
"role": "user",
"content": "tell me a joke on cats"
},
{
"role": "assistant",
"content": "here is a joke about cats..."
},
{
"role": "user",
"content": "now a joke on dogs"
}
]
};
(async function() {
try {
const response = await axios.post(url, data, { headers: { 'x-api-key': api_key } });
console.log(response.data);
} catch (error) {
console.error('Error:', error.response.data);
}
})();
Attributes
An array of objects containing the role and content
Could be "user", "assistant" or "system".
A string containing the user's query or the assistant's response.
To keep track of your credit usage, you can inspect the response headers of each API call. The x-remaining-credits property will indicate the number of remaining credits in your account. Ensure you monitor this value to avoid any disruptions in your API usage.
GPT-3.5 Turbo
GPT-3.5 Turbo models can understand and generate natural language or code and have been optimized for chat using the Chat Completions API but work well for non-chat tasks as well. The latest GPT-3.5 Turbo model with higher accuracy at responding in requested formats and a fix for a bug which caused a text encoding issue for non-English language function calls. Returns a maximum of 4,096 output tokens
Other Popular Models
sdxl-img2img
SDXL Img2Img is used for text-guided image-to-image translation. This model uses the weights from Stable Diffusion to generate new images from an input image using StableDiffusionImg2ImgPipeline from diffusers

idm-vton
Best-in-class clothing virtual try on in the wild

illusion-diffusion-hq
Monster Labs QrCode ControlNet on top of SD Realistic Vision v5.1

faceswap-v2
Take a picture/gif and replace the face in it with a face of your choice. You only need one image of the desired face. No dataset, no training
