Qwen2 VL 72B Instruct

Qwen2-VL-72B-Instruct is a state-of-the-art multimodal model excelling in image and video understanding, with advanced capabilities for text-based interaction.


Pricing

Serverless Pricing

Buy credits that can be used anywhere on Segmind

Input: $1.200, Output: $1.200 per million tokens

Qwen2-VL-72B-Instruct

Qwen2-VL-72B-Instruct is an advanced image-text-to-text model designed for a wide range of visual understanding and reasoning tasks. This model is a significant upgrade from the previous Qwen-VL, incorporating several key enhancement.

Key Features of Qwen2-VL-72B-Instruct

  • Superior Image Understanding: Qwen2-VL achieves state-of-the-art performance on various visual understanding benchmarks including MathVista, DocVQA, RealWorldQA, and MTVQA. It demonstrates strong capabilities in processing images with different resolutions and aspect ratios.

  • Agent Capabilities: Qwen2-VL can be integrated with devices like mobile phones and robots for automatic operation based on visual environment and text instructions, demonstrating complex reasoning and decision-making skills.

  • Multilingual Support: Beyond English and Chinese, the model supports understanding text within images in many languages, including most European languages, Japanese, Korean, Arabic, and Vietnamese.

  • Dynamic Resolution Handling: Qwen2-VL can handle arbitrary image resolutions, mapping them into a dynamic number of visual tokens for a more human-like visual processing experience.

  • Advanced Positional Embedding: The model uses Multimodal Rotary Position Embedding (M-ROPE) to capture 1D textual, 2D visual, and 3D video positional information, enhancing its multimodal processing capabilities

Technical Specifications

  • Model Architecture: The model employs a large-scale transformer architecture with 72 billion parameters.

  • Resolution Flexibility: The model is able to process a range of image resolutions, and its computational requirements can be adjusted by setting minimum and maximum pixel counts to optimize performance for specific hardware. Images can be resized to a specific width and height.

Limitations

  • The model has limitations in recognizing specific individuals or intellectual property.

  • It may struggle with complex, multi-step instructions.

  • Counting accuracy is not high in complex scenes.

  • Spatial reasoning skills, especially in 3D spaces, require further improvements.

Cookie settings

We use cookies to enhance your browsing experience, analyze site traffic, and personalize content. By clicking "Accept all", you consent to our use of cookies.