API
If you're looking for an API, you can choose from your desired programming language.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import requests
import base64
# Use this function to convert an image file from the filesystem to base64
def image_file_to_base64(image_path):
with open(image_path, 'rb') as f:
image_data = f.read()
return base64.b64encode(image_data).decode('utf-8')
# Use this function to fetch an image from a URL and convert it to base64
def image_url_to_base64(image_url):
response = requests.get(image_url)
image_data = response.content
return base64.b64encode(image_data).decode('utf-8')
api_key = "YOUR_API_KEY"
url = "https://api.segmind.com/v1/segmind-vega-rt-v1"
# Request payload
data = {
"prompt": "backlight, wilderness woman hunting in jungle hiding behind leaves, face paintings closeup face portrait, detailed eyes, nature documentary, dry skin, fuzzy skin, lens flare",
"num_inference_steps": 4,
"seed": 758143278,
"img_width": 1024,
"img_height": 1024,
"base64": False
}
headers = {'x-api-key': api_key}
response = requests.post(url, json=data, headers=headers)
print(response.content) # The response is the generated image
Attributes
Prompt to render
Number of denoising steps.
min : 4,
max : 10
Seed for image generation.
min : -1,
max : 999999999999999
Can only be 1024 for SDXL
Allowed values:
Can only be 1024 for SDXL
Allowed values:
Base64 encoding of the output image.
To keep track of your credit usage, you can inspect the response headers of each API call. The x-remaining-credits property will indicate the number of remaining credits in your account. Ensure you monitor this value to avoid any disruptions in your API usage.
Segmind-VegaRT - Latent Consistency Model (LCM) LoRA of Segmind-Vega
Segmind-VegaRT a distilled consistency adapter for Segmind-Vega that allows to reduce the number of inference steps to only between 2 - 8 steps.
Latent Consistency Model (LCM) LoRA was proposed in LCM-LoRA: A universal Stable-Diffusion Acceleration Module by Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu et al.
This model is the first base model showing real-time capabilities at higher image resolutions, but has its own limitations;
-
The model is good at close up portrait images of humans but tends to do poorly on full body images.
-
Full body images may show deformed limbs and faces.
-
This model is an LCM-LoRA model, so negative prompt and guidance scale parameters would not be applicable.
-
Since it is a small model, the variability is low and hence may be best used for specific use cases when fine-tuned.
We will be releasing more fine tuned versions of this model so improve upon these specified limitations.
Other Popular Models
sdxl-controlnet
SDXL ControlNet gives unprecedented control over text-to-image generation. SDXL ControlNet models Introduces the concept of conditioning inputs, which provide additional information to guide the image generation process

illusion-diffusion-hq
Monster Labs QrCode ControlNet on top of SD Realistic Vision v5.1

sdxl-inpaint
This model is capable of generating photo-realistic images given any text input, with the extra capability of inpainting the pictures by using a mask

sd2.1-faceswapper
Take a picture/gif and replace the face in it with a face of your choice. You only need one image of the desired face. No dataset, no training
