Segmind-VegaRT - Latent Consistency Model (LCM) LoRA of Segmind-Vega
Segmind-VegaRT a distilled consistency adapter for Segmind-Vega that allows to reduce the number of inference steps to only between 2 - 8 steps.
Latent Consistency Model (LCM) LoRA was proposed in LCM-LoRA: A universal Stable-Diffusion Acceleration Module by Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu et al.
This model is the first base model showing real-time capabilities at higher image resolutions, but has its own limitations;
-
The model is good at close up portrait images of humans but tends to do poorly on full body images.
-
Full body images may show deformed limbs and faces.
-
This model is an LCM-LoRA model, so negative prompt and guidance scale parameters would not be applicable.
-
Since it is a small model, the variability is low and hence may be best used for specific use cases when fine-tuned.
We will be releasing more fine tuned versions of this model so improve upon these specified limitations.
Other Popular Models
sdxl-controlnet
SDXL ControlNet gives unprecedented control over text-to-image generation. SDXL ControlNet models Introduces the concept of conditioning inputs, which provide additional information to guide the image generation process

illusion-diffusion-hq
Monster Labs QrCode ControlNet on top of SD Realistic Vision v5.1

sdxl-inpaint
This model is capable of generating photo-realistic images given any text input, with the extra capability of inpainting the pictures by using a mask

sd2.1-faceswapper
Take a picture/gif and replace the face in it with a face of your choice. You only need one image of the desired face. No dataset, no training
